git clone https://github.com/XiYe20/CustomDiffusers.git
cd CustomDiffusers
pip install -e .
pip install -r requirements.txt
Processed KTH dataset: https://drive.google.com/file/d/1RbJyGrYdIp4ROy8r0M-lLAbAMxTRQ-sd/view?usp=sharing
SM-MNIST: https://drive.google.com/file/d/1eSpXRojBjvE4WoIgeplUznFyRyI3X64w/view?usp=drive_link
For other datasets, please download them from the official website. Here we show the dataset folder structure.
Please download the original BAIR dataset and utilize the “/utils/read_BAIR_tfrecords.py” script to convert it into frames as follows:
/BAIR
test/
example_0/
0000.png
0001.png
…
example_1/
0000.png
0001.png
…
example_…
train/
example_0/
0000.png
0001.png
…
example_…
Please download “leftImg8bit_sequence_trainvaltest.zip” from the official website. Center crop and resize all the frames to the size of 128X128. Save all the frames as follows:
/Cityscapes
test/
berlin/
berlin_000000_000000_leftImg8bit.png
berlin_000000_000001_leftImg8bit.png
…
bielefeld/
bielefeld_000000_000302_leftImg8bit.png
bielefeld_000000_000302_leftImg8bit.png
…
…
train/
aachen/
….
bochum/
….
…
val/
….
Please download the raw data (synced+rectified) from KITTI official website. Center crop and resize all the frames to the resolution of 128X128. Save all the frames as follows:
/KITTI
2011_09_26_drive_0001_sync/
0000000000.png
0000000001.png
…
2011_09_26_drive_0002_sync/
…
…
The STDiff project uses accelerate for training. The training configuration files and test configuration files for different datasets are placed inside stdiff/configs.
. ./train_script.sh
. ./test_script.sh
@inproceedings{ye2024stdiff,
title={STDiff: Spatio-Temporal Diffusion for Continuous Stochastic Video Prediction},
author={Ye, Xi and Bilodeau, Guillaume-Alexandre},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={38},
number={7},
pages={6666--6674},
year={2024}
}
The temporal coordinates are shown at the top left corner of the frame. Frames with Red temporal coordinates denote future frames predicted by our model.